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Abstract—This study deals with the temperature distribution in a visco-elastic fluid of Walters’ liquid B

model over a horizontal stretching plate. The velocity of the plate is proportional to the distance from the

slit and the plate is subject to variable heat flux. The results are expressed in terms of Kummer’s functions.

Several closed-form solutions for specified conditions are presented. The effect of the visco-elastic parameter

Ko* and the heat flux parameter s on the temperature field is also studied. In addition, the solutions of a

linearly stretching plate in a Newtonian flow with variable surface heat flux are also obtained. When
Ko* = 0 and s = 0, the solutions reduce to the published results.

INTRODUCTION

BOUNDARY-LAYER behaviour on a moving continuous
solid surface is an important type of flow occurring in
a number of engineering processes. An example of
a moving continuous surface is a polymer sheet or
filament extruded continuously from a die, or a long
thread travelling between a feed roll and a wind-up
roll.

Flow in the boundary layer on a continuous solid
surface with constant speed was studied by Sakiadis
{1]. Due to entrainment of ambient fluid, this situation
represents a different class of boundary layer problem
which has a solution substantially different from that
of boundary layer flow over a semi-infinite flat plate.
Erickson et al. [2] extended this problem to the case
in which suction or blowing existed at the moving
surface. Since polyester is a flexible material, the fila-
ment surface may stretch during the course of ejection
and therefore the surface velocity deviates from being
uniform. Crane [3] considered a moving strip the vel-
ocity of which is proportional to the distance from the
slit. These types of flow usually occur in the drawing of
plastic films and artificial fibres. The heat and mass
transfer on a stretching sheet with suction or blowing
was investigated by Gupta and Gupta [4]. They dealt
with the isothermal moving plate and obtained the
temperature and concentration distributions. Dutta
et al. [5] analysed the temperature distribution in the
flow over a stretching sheet with uniform heat flux. It
is shown that the temperature at a point decreases
with an increase in the Prandtl number.

More recently Siddappa and Abel [6] studied the
non-Newtonian flow past a stretching plate and
obtained the solution of the equation of motion.
Grubka and Bobba [7] considered the heat transfer
occurring on a continuous, linearly stretched surface
with a power law surface temperature. In the present
investigation, the heat transfer in a visco-elastic fluid
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of Walters’ liquid B model over a stretching plate
subject to power law flux has been studied. A series
solution to the energy equation in terms of Kummer’s
functions is obtained. Several closed-form analytical
solutions are also presented for special conditions.

In many practical fluids such as plastic films and
artificial fibres, the hypothesis of a Newtonian fluid
is obviously unsuitable. Therefore, the problem of
determining the temperature field in a non-Newtonian
fluid over a stretching surface does not seem to have
received any attention. The present study is addressed
to this problem.

ANALYSIS

Consider a steady visco-elastic two-dimensional
flow past a horizontal stretching plate that issues from
a thin slit at x = 0, y = 0, as in a polymer processing
application (Fig. 1). It is assumed that the speed of a
point on the plate is proportional to its distance from
the slit, the boundary layer approximations are still
applicable, and viscous dissipation is neglected in the
energy equation.

The steady-state boundary layer equation govern-
ing the flow of visco-elastic fluid (Walters’ liquid B)
[6] is
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the continuity equation is
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and the energy equation is
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f  similarity solution of equations (1) and (2)

g  similar dimensionless temperature
function

k  thermal conductivity

Ko* visco-elastic parameter

P dimensionless parameter in equation (16)
Pr  Prandtl number

g  surface heat flux

s heat flux parameter

T  temperature

u,v velocity component in x, y direction.

Greek symbols
o thermal diffusivity

NOMENCLATURE

n  similarity variable

@  dimensionless temperature
v kinematic viscosity of fluid
Y  stream function.

Superscript
derivative with respect to 7.

Subscripts
y  derivative with respect to y
w  stretching plate conditions
oo  ambient conditions.
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FiG. 1. Boundary layer on a stretching plate.
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where (x,y) are the coordinates, (u,v) the velocity
components in these directions, and Ko* the visco-
elastic parameter. The relevant boundary conditions
are

oT

u=mx, v=_0, —k5=qw=Axs fory=20
u=0, v=-C, u,=0, T=T, asy—-w
4)

where m and A are given constants, C is a positive
constant to be determined and subscript y denotes
differentiation with respect to y.

Since the fluid is incompressible, the momentum
equation (1) and energy equation (3) can be solved
consecutively. The solution to the momentum equa-
tion will be considered first. A stream function
defined by

oy oy
u= a v=— (©)
is introduced such that the continuity equation is
identically satisfied.
A dimensionless stream function is given by

Y = (mx/r)f(n), n=ry. ©®

Here r is a positive constant to be determined from
equation (1), f is the dimensionless stream function

and the similarity variable # depends on y only. Using
equations (5) and (6), the velocity components
become

u=m'(, o=-"[f)-1O1 (D

where a prime denotes differentiation with respect to
n. We can set f(0) = 0 in equation (7) without loss of
generality so that

v=—(mjr)f(n). ®)

Putting these values of u and v in equation (1) it
becomes

SV —ff" = (i m) [ —Ko* r*{2f "
/AR VAL I )
which is subject to the boundary conditions

f0=1 forn =0

f(0) =0, f"(0) =0, C=?f(oo) asn — o0.

(10

In order to satisfy the above boundary conditions,
Siddappa and Abel [6] have suggested to try a solution
of the form

ffm=e, f)=1-e" (1mn

Then equation (9) becomes
—\/ _ 12
"=V \oim=Ko*) (12

hence the solution of equation (1) is obtained as

m
u=mxe ", v= —7(1—6"’). (13)
To solve the energy equation (3), the temperature
distribution can be taken in the form of a similar
solution as
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Ax*
T-T., =" -9(0. (14
By substituting equations (13) and (14) into equation
(3), one obtains

g"+P(1—e ")g' —Pse "g=0 (15)

where P is the modified Prandtl number in the visco-
elastic fluid expressed as

P = (v/a—m Ko* /). (16)

It should be noted that the dimensionless parameter
P relates the relative magnitudes of diffusion of
momentum and heat in the visco-elastic fluid. For
a Newtonian fluid, i.e. Ko* =0, P in equation (16)
reduces to Pr. The boundary conditions for g are
derived from equations (4) and (14) as

g0 =—1, g(x0)=0 (17
Introducing a new variable { = —Pe~" and sub-
stituting the solution for f into equation (15) gives
d’g dg
d—éj+(l—P——é)EE+sg—O (18)
with the boundary conditions
dg(é = —P
YE==P _ _1p, ge=0y=0. (9)

d¢

The solution of equation (18) satisfying equation
(19) in terms of Kummer’s functions [8] is

1 ENX M(P—s,P+1,8)
96 ’F(_? M(P—s, P, P) (20)
where
< a, 2"
M(a,b,Z) =14+ ’I;lg’; ;
a, =ala+1)(a+2),...,(a+n-1)
b, =bb+1)(b+2),...,(b+n—1). 21
Rewriting equation (20) in terms of
1, MP—-s P+1, —Pe™")
gtn) = pe M(P—s, P, — P) @2)
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The wall temperature T, is obtained from equation
(14) as

Ax°

where

1 M(P—s,P+1,—P)

90) = 5 "M(P—s,P.—P)
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It is worth pointing out that the dimensionless tem-
perature distribution 8 = (T—T,.)/(T,— T,) is equal
to the ratio of g(n) to g(0). Several closed-form solu-
tions are developed from equations (22) and (24) for
specific values of s and P. Four such cases are reported
in Table 1.

RESULTS AND DISCUSSION

Equations (22) and (24) were evaluated to deter-
mine the temperature field and the surface tem-
perature as a function of P and s. It should be noted
that the solutions of a continuous, stretching surface
in a Newtonian fluid with variable surface heat flux
are

1, MPr—s Pr+l1,—Pre™")
g(n) = 5e” " (25)

Pr M(Pr—s, Pr, — Pr)

For a uniform heat flux in a Newtonian fluid, i.e.
s = 0, equation (25) reduces to that reported by Dutta
etal. [5].

As the numerical value of the fluid visco-elastic
parameter Ko* decreases, the dimensionless par-
ameter P increases. Temperature fields were obtained
for P =0.3,0.5, 1, 3, and 5 with s ranging between —2
and 2. The effect of the heat flux parameter s on 0 is
illustrated in Fig. 2 for P = 0.7. Figure 2 shows that
the wall temperature gradient is negative for s = 0,
1, and 2. This implies that the heat flows from the
continuous surface to the ambient. The magnitude of
the temperature gradient increases with increasing s.
When s = —2, the sign of the temperature gradient
changes but the value of g(0) is negative; and hence
the heat flux at the surface flows into the fluid. It can

Table 1. Dimensionless temperature and wall temperature expressions for
various P and S

s P 0 9(0)
P S (e~™)/P /P
0 1 e(lvcxp(—cvn)) e—1
0 e? P~Py(P, P)t

P e’ P~"y(P,Pe")
P

— Il’(l +P—Pe Mexp(P(l—n—e™")

—1/P

Ty incomplete Gamma function.
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FI1G. 4. Dimensionless surface temperature for various s.
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be seen in Fig. 2 that a zero temperature gradient
occurs at s = —2, where a minimum temperature
exists in the thermal boundary layer. Therefore, the
heat flows into the thermal boundary layer from both
the ambient free stream and the stretching plate.

The dimensionless temperature field 8 vs y for vari-
ous P at s = 1 are plotted in Fig. 3. It is shown that
the temperature at a point decreases with decreases in
the visco-elastic parameter Ko*. For a given s value,
the larger the P, the smaller the thermal boundary
layer thickness. The dimensioniess surface tempera-
ture, g{(0), variation with P is given in Fig. 4. The
surface temperature decreases rapidly as P increases
from 0 to 1 and then slowly decreases with increases
in P. Figure 4 also shows that the larger the heat flux
parameter s, the smaller the surface temperature.

CONCLUSIONS

In this study, the heat transfer in a visco-elastic fluid
of Walters’ liquid B model over a linearly horizontal
stretching plate with a power law heat flux has been
solved in terms of Kummer’s functions. Several
closed-form solutions for specified conditions are
presented.

The thermal boundary layer thickness decreases
with a decrease in the visco-elastic parameter, Ko*,
i.e. an increase in the modified Prandt! number, P.
Varying the heat flux parameter s affects the mech-
anism of heat transfer. The temperature field in the
Newtonian fluid over a stretching plate with variable
heat flux is also included in this work. When P = Pr,
s = 0, the solutions reduce to the published results [5].
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CHAMP DE TEMPERATURE DANS UN ECOULEMENT NON-NEWTONIEN SUR UNE
PLAQUE AVEC UN FLUX DE CHALEUR VARIABLE

Résumé—Cette étude concerne la distribution de température dans un fluide visco-8lastique selon le modéle
liquide B de Walter sur une plaque horizontale. La vitesse de la plaque est proportionnelle 2 la distance
de la fente et la plaque est soumise & un flux variable. Les résultats sont exprimés en fonction des variables
de Kummer. Quelques solutions analytiques pour des conditions spécifiques sont présentées, On étudie
aussi Peffet du paramétre visco-&lastique Ko* et des paramétres de flux thermique sur le champ de
température. De plus, les solutions sont obtenues pour une plaque dans un écoulement newtonien, avec
un flux pariétal thermique variable. Lorsque Ko* = 0 et s = 0, les solutions se réduisent aux résultats déja
publiés.
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TEMPERATURFELD IN EINER NICHT-NEWTONSCHEN STROMUNG UBER EINE
AUSGEDEHNTE PLATTE BEI VERSCHIEDENEN WARMESTROMDICHTEN

Zusammenfassung—Diese Studie beschiftigt sich mit der Temperaturverteilung in einem viskoelastischen
Fluid (Fliissigkeitsmodell B nach Walter) iiber eine horizontal ausgedehnte Platte. Die Geschwindigkeit
der Platte ist proportional zur Entfernung vom Spalt; der Platte werden verschiedene Wirmestrome
aufgeprigt. Die Ergebnisse sind in Form von Kummer-Funktionen ausgedriickt. Fiir spezielle Bedingungen
werden verschiedene geschlossene Losungen angeboten. Die Auswirkung des viskoelastischen Parameters
Ko* und des Wirmestromparameters s auf das Temperaturfeld werden ebenso untersucht. Zusitzlich erhilt
man die Losungen fiir eine linear ausgedehnte Platte in einer newtonschen Strdmung mit verschiedenen
Oberflichenwirmestrémen. Fiir Ko* =0 und s =0 fithren die obigen Losungen auf die bekannten
Ergebnisse.

TEMIIEPATYPHOE IOJIE NP OBTEKAHUHN HEHBIOTOHOBCKON XUAKOCTLIO
IJIACTUHBI, HATPEBAEMOI NEPEMEHHBIM TEIUIOBBIM ITOTOKOM

Aunoramus—HccienyeTcs TeMnepaTypHoe noJie B BA3KOYNPYroi xuaxoctu Banrepea (B) Bokpyr ropu-
30HTAJIBHOA dopmMyemMo#t nuacTHHBL. CKOPOCTb IUIACTHHBI NPONOPUMOHANIBHA PACCTOSHHIO OT LIEH.
TlnacTHHa HarpeBaeTCs NEPEMEHHBIM TEMJIOBBLIM MOTOKOM. Pe3y/bTaThl peACTABNEHE! B BUAe QyHKUMIH
Kymmepa a5 KOHKpeTHBIX ycnosuit. [IpHBENeHbl HECKOJILKO PELICHMH B 3aMKHYTON $opMe M H3yYeHO
TaKkXke BIMSHMC HA TEMIICpATYpHOE MOJie mapaMeTpa Bs3koynpyroctd Ko* M mapamerpa TEILIOBOTO
noToka s. Kpome Toro, nosryMeHs! pellieHus 1T IACTHHBI, ABIXYILEHCS MO TMHeHRHOMY 3akoHy B Hblo-
TOHOBCKO#l XXHIKOCTH NPH NEPEMEHHOM TEILUIOBOM MNOTOKe Ha noBepXHOCTH. Ilpu Ko* =0 u s =0
pelleHHs 1al0T paHee H3BECTHBIE PE3YIbTATHI.
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